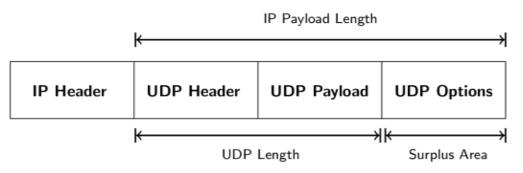
Overcoming the Sorrows of the Young UDP Options


Raffaele Zullo, Tom Jones, Gorry Fairhurst University of Aberdeen, UK

Road map

- UDP Options
- Path traversal pathologies
 - UDP Checksum validation
 - UDP and IP length consistency check
- Checksum Compensation Option
- Measurements
 - Tracemore
- Results
 - Path characterisation
 - Path traversal using CCO
 - Path traversal using zero checksum
- Genesis of UDP Options pathologies
- Conclusions

UDP Options (UDP-O)

Surplus area

- Added at the end of UDP Payload
- Leverages the redundancy between UDP Length and IP Payload Length
 - IP Payload Length = IP Total Length IP Header Length, for IPv4
 - IP Payload Length = IPv6 Payload Length Length of IPv6 Extension Headers, for IPv6
- Type-Length-Value Encoding

Fields affected

- IPv4 Total Length (IPv6 Payload Length), Surplus area itself, UDP Length, UDP Checksum, IPv4 Checksum
- **Draft:** draft-touch-tsvwg-udpoptions [1]

Raffaele Zullo – TMA2020 – 10/06/2020

UDP Options

Usefulness of UDP Options

- Communicate remote parameters, e.g. the receiver maximum datagram size
- Signal metadata about a stream to the network path, e.g. loss reports, RTT, ECN feedback
- Enable higher level transport features
- Transport partially covered payload, like in UDP-Lite
- Enable Datagram Packetization Layer PMTU Discovery
- Provide transport-layer fragmentation in order to avoid the fragility of IP fragmentation
 - Can benefit DNSSEC

Transport Layer Ossification

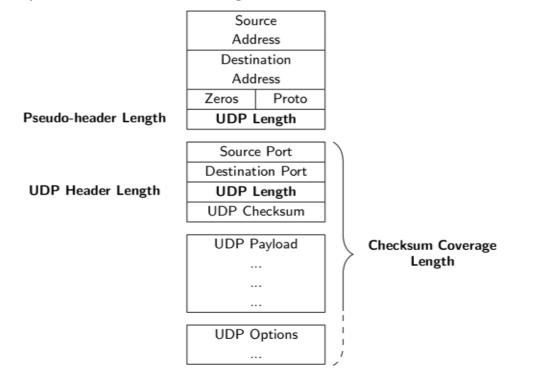
- **TCP:** TCP Fast Open amending the original handshake mechanism
 - Obstructed by devices built to enforce the original handshake requirements
- **UDP:** Amendment of the original IPv6 specifications to allow endpoints to use a zero UDP checksum (for tunnel transports that carry an already checksum-protected packet)
 - Obstructed by devices that consider IPv6 UDP datagrams with zero checksum malformed

Can UDP Options be deployed?

Raffaele Zullo – TMA2020 – 10/06/2020

UDP Options Pathologies

- Pathologies
 - UDP Checksum validation
 - Four checksum computation schemes implemented in the wild (one benign)
 - Length consistency check
 - UDP Length = IP Payload Length
 - Pathologies tested but not detected
 - No deletion or alteration of the surplus area
 - No interference related IPv4 Checksum
 - It is computed on the IP header bytes only and involves the IP Total Length only


Devices affected

- Middleboxes
 - Home NATs, CGNs, Firewalls, IDS/IPS, etc
- End-hosts
 - Checksum offloading to NIC

Raffaele Zullo – TMA2020 – 10/06/2020

UDP Checksum Pathologies

• UDP Checksum computation involves three Length values

Raffaele Zullo – TMA2020 – 10/06/2020

Four UDP Checksum Schemes

	Scheme	UDP Header	UDP Pseudo-header	Checksum Coverage
1	Correct UDP Checksum	UDP Length	UDP Length	UDP Length
2	IP Payload Checksum	UDP Length	IP Payload Length	IP Payload Length
3	3rd Checksum	UDP Length	UDP Length	IP Payload Length
4	4th Checksum	UDP Length	IP Payload Length	UDP Length

- Same value for UDP but four differing values for UDP-O
- Ist scheme is benign
- UDP-O with the correct checksum are discarded by devices implementing the other schemes
- After a preliminary analysis the 2nd scheme (IP Payload checksum) turned out to be the most widespread
- A first sign of this issue was found in a bug detected in FreeBSD, where the checksum length was based on the IP length, that was corrected during UDP-O Implementation [3]

Correct CS vs IP Payload CS

Source				
Add	Address			
Destir	nation			
Add	ress			
Zeros	Proto			
UDP I	ength			
Source Port				
Destinat	Destination Port			
UDP Length				
UDP Checksum				
UDP Payload				

Source				
Address				
Desti	nation			
Add	lress			
Zeros Proto				
IP Payloa	ad Length			
Source Port				
Destination Port				
UDP Length				
UDP Checksum				
UDP Payload				

UDP	Options

Options Length		

UDP	Options

Correct CS Raffaele Zullo – TMA2020 – 10/06/2020 IP Payload CS

Checksum Compensation Option

Kind=0×CC	Length=4	Checksum
-----------	----------	----------

- **Draft:** draft-ietf-fairhurst-udp-options-cco [2]
- Definition: CCO contains the 2-byte checksum of the Options area plus a 2-byte pseudo-header conceptually prefixed to the options and containing the length of the surplus area itself.
 CCO provides also an integrity check on the Options area: it can replace UDP OCS (Option Checksum)

<u>CCO compensates the difference</u> <u>between the correct UDP checksum</u> <u>and the IP Payload checksum</u>

• Notes: Padding and other measures have to taken into account in its calculation to also compensate the misalignment between the UDP header and the first byte of the options or the CCO itself

Raffaele Zullo – TMA2020 – 10/06/2020

Purpose:

Format:

Tracemore

- Derived from Mobile Tracebox code base
- Written in C
- All IP and UDP fields can be customised
 - Can forge UDP and UDP-O packets
 - Can generate a checksum compliant with each of the 4 schemes or even not compliant with any scheme
- Payload can be customised using crafted application packets, e.g. a DNS query
- Can perform traceroute / tracebox
- Code available at:

http://www.middleboxes.org/tracemore

Tracemore

• Edge netwok (Three UK)

0:	10.190.x.x	[UDP 33 bytes]
1:	* * *	
2:	172.23.x.x	
3:	172.23.x.x	
4:	172.23.x.x	
5:	* * *	
6:	188.31.x.x	
7:	188.31.x.x	
8:	188.31.x.x	
9:	188.31.x.x	
10:	195.66.x.x	
11:	1.1.x.x	[UDP 64 bytes]

UDP-O				
	0:	10.190.x.x	[UDP 33 bytes]	
	1:	* * *		
	2:	* * *		
	3:	* * *		

UDP-Ow/CCO

0:	10.190.x.x	[UDP	33	bytes]
1:	* * *			
2:	172.23.x.x			
3:	172.23.x.x			
4:	172.23.x.x			
5:	* * *			
6:	188.31.x.x			
7:	188.31.x.x			
8:	188.31.x.x			
9:	188.31.x.x			
10:	195.66.x.x			
11:	1.1.x.x	[UDP	64	bytes]

DNS server

0:	212.25. x .x	[UDP 33 bytes]
64:	87.240.x.x	[UDP 64 bytes]

UDP

0:	212.25.x.x	[UDP 33 bytes]
64:	* * *	

UDP-O

UDP-O w/CCO

0:	212.25.x.x	[UDP	33	bytes]
64:	87.240.x.x	[UDP	64	bytes]

Raffaele Zullo – TMA2020 – 10/06/2020

Methodology

Paths to UDP servers

- Application packets, such as **DNS Query** or **STUN Bind Request**, are encapsulated in UDP and UDP-O datagrams and sent to UDP servers
- Based on the subset of replies received we can infer which packets have reached the destination and therefore which pathology or pathologies affect the path

Paths to HTTP servers

- To increase the number of paths and ASes tested
- HTTP servers are not expected to reply to UDP packets received on port 80
- Some of them reply with ICMP (or ICMPv6) Port Unreachable messages
- We can leverage the subset of ICMP messages received to infer which packets have reached the destination
- Further considerations:
 - Presence of a firewall before the HTTP server that replies with ICMP
 - ICMP rate limiting and other ICMP interference on the return path
 - Not all HTTP servers reply with ICMP

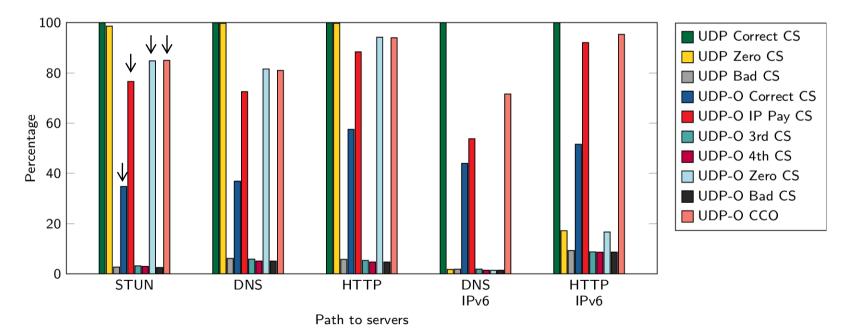
Dataset

• Paths tested

Protocol	IP	Origin	Addresses	ASes
STUN	IPv4	Full range scan	66K	8K
DNS	IPv4	Alexa Top-1m	190K	15K
HTTP	IPv4	Alexa Top-1m	125K	5K
DNS	IPv6	Alexa Top-1m	17K	1.1K
HTTP	IPv6	Alexa Top-1m	12K	0.3K

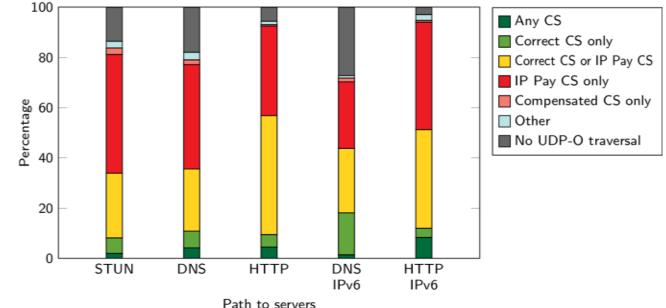
- STUN servers list obtained from a preliminary IPv4 full range scan
- Autoritative **DNS** servers and **HTTP** servers list obtained from **Alexa Top-Im**
 - About one quarterof the servers in the full HTTP list were eligible for our test

Test Suite


• 3 UDP datagrams

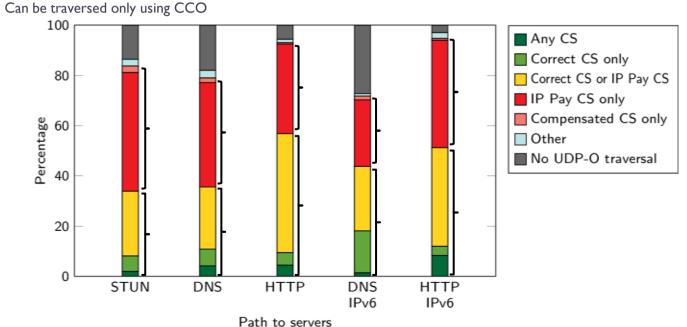
- To characterise the path in absence of UDP Options
- 7 UDP-O datagrams, one with CCO
 - To detect interference with UDP Options

#	Packet	Notes
1	UDP	Correct CS
2	UDP	Zero CS
3	UDP	Bad CS
4	UDP Options	Correct CS
5	UDP Options	IP Payload CS
6	UDP Options	3rd CS
7	UDP Options	4th CS
8	UDP Options	Zero CS
9	UDP Options	Bad CS
10	UDP Options	With CCO


Overall Traversal Results

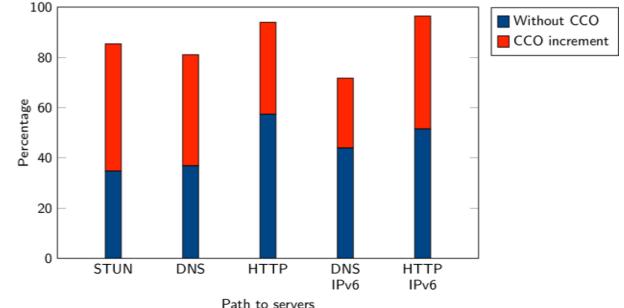
- Limited traversal rate for UDP-O datagrams compliant with the original specification (UDP-O Correct CS)
- Better performances for UDP-O packets with IP Payload CS, zero CS or using CCO

Path Characterisation


- IP Payload checksum is the most widespread pathology (80% of paths traversed by UDP-O)
 - Can be present in combination with the benign pathology on the same path
 - 3rd and 4th checksum pathology very rare
- No UDP-O traversal on about 16% of the paths (length consistency check)

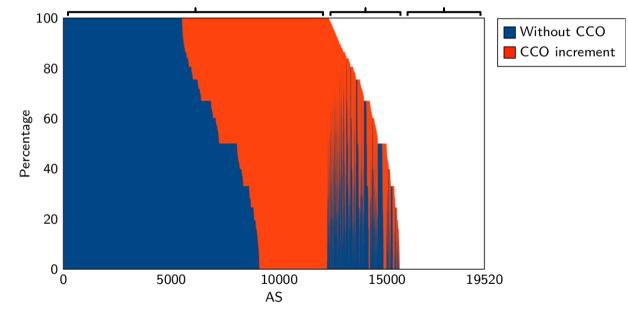
Raffaele Zullo – TMA2020 – 10/06/2020

Path Characterisation


- Any CS, Correct CS only, Correct CS or IP payload CS categories
 - Can be traversed by UDP-O according to original specifications
- IP payload CS and Compensated CS only categories

•

Path Traversal Using CCO


- CCO significantly increases UDP-O traversal rate
- For IPv4 paths to STUN and DNS servers, the increment from using the CCO is even greater than the number of paths originally traversed by UDP-O

Raffaele Zullo – TMA2020 – 10/06/2020

Path Traversal Using CCO per AS

- I. ASes in which all paths can be traversed by UDP-O (63%)
- 2. ASes in which a subset of paths can be traversed by UDP-O (18%)
- 3. ASes in which no measured path could be traversed by UDP-O, without or with the CCO (19%)

Path traversal using zero CS

Comparison of UDP-O traversal with CCO and zero checksum

		STUN	DNS	HTTP
UDP	Zero CS	98.61%	99.73%	99.75%
UDP-0	CCO Zero CS Both Only CCO Only Zero CS	84.98% 84.78% 83.72% 1.26% 1.06%	80.97% 81.60% 80.66% 0.31% 0.94%	93.95% 94.19% 93.77% 0.18% 0.42%

- Zero checksum traversal is not always better than CCO
 - A small percentage of paths can be traversed only using CCO
 - Interference with zero checksum was also observed with regular UDP datagrams
 - Results are limited to IPv4
- Zero checksum can be an alternative for UDP Options that, by design, should not be covered by a checksum
 - E.g. LITE

Genesis of UDP-O Pathologies

- Checksum pathologies
 - Ambiguity in the role of the two lengths
 - Analogy with TCP checksum computation
 - Since TCP has no length field the length of a TCP segment is deduced from the IP header and the checksum is computed over all transport layer bytes
- Length consistency check
 - Assumption that UDP Length and IP Payload length coincide
 - Detection of malformed packets
 - Prevention of covert channel communication

Network Equipment Manufacturers

Manufacturer #I

• Explained that on it the default behavior for a stateful firewall was to discard all packets with incorrect checksums This is actually reasonable since, before applying rules that involve transport layer to the packet, transport layer integrity should be verified

Manufacturer #2

• Confirmed that their middleboxes performed a consistency check between IP and UDP length along with other integrity checks on datagrams and discarded them in the case of a length mismatch

The case of Correct CS OR IP Pay CS

Dual checksum validation

- Cannot be due to two distinct devices
 - Each device would discard the checksum compliant to the other
- A possible explanation is that the two validations happen at different layers within a single device

Observed on Linux devices: workstations, servers, Android smartphones

• IP Payload checksum validation only observed when checksum offloading enabled

Linux kernel code

• If the checksum is validated by the NIC the datagram is directly accepted otherwise the checksum is verified again using the kernel routine

• Less benign than expected

- Incoming UDP-O packets are not validated correctly by the NIC so they need to be validated at kernel level
- · For outgoing UDP-O packets offloading must be disabled
- CCO can help
 - Incoming UDP-O packets are validated directly by the NIC
 - The checksum on outgoing UDP-O packets can be offloaded, leaving only the checksum on the surplus area to be computed at kernel level

Raffaele Zullo – TMA2020 – 10/06/2020

Conclusions and Future Work

• First analysis of UDP-O path pathologies

- Implications on UDP-O design and deployment
- Limited traversal success for UDP-O according to the original specification
- Checksum Compensation Option
- CCO can significantly increase UDP-O traversal rate
 Redesign OCS to achieve CCO function
- Zero checksum can be an alternative for specific UDP Options such as LITE
- Genesis of UDP-O pathologies

- Validate our results on a larger dataset
 - Scans over other UDP protocols (on IPv4 full range and IPv6 target lists)
- Focus our measurements on edge networks
 - Release a tool to measure UDP-O without root privileges

Raffaele Zullo – TMA2020 – 10/06/2020

Tracemore

http://www.middleboxes.org/tracemore

Questions, comments, etc **Raffaele Zullo** <raffaele.zullo@gmail.com> <raffaele@erg.abdn.ac.uk>

Raffaele Zullo – TMA2020 – 10/06/2020

References

[1] J. Touch, "Transport options for UDP", 2019, IETF Internet draft draft-touch-tsvwgudpoptions

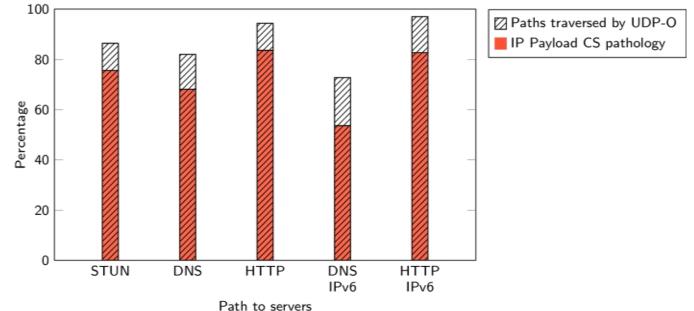
https://datatracker.ietf.org/doc/draft-touch-tsvwg-udp-options/

[2] G. Fairhurst, T. Jones, and R. Zullo, "Checksum Compensation Optionsfor UDP Options," 2018, IETF Internet-Draft draft-fairhurst-udpoptions-cco <u>https://datatracker.ietf.org/doc/draft-fairhurst-udp-options-cco/</u>

[3] "BSD Revision 334705", 2018

https://svnweb.freebsd.org/base?view=revision&revision=334705

[4] G. Fairhurst, T. Jones, and R. Zullo, "A Tale of Two Checksums" 2018, IETF


Path Characterisation

- Each packet in the test suite provide information about the path
- Only their combination can highlight the pathology or pathologies that affect the path

Path characterization		Tests								
		2	3	4	5	6	7	8	9	10
Any Checksum	\checkmark	*	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	\checkmark
Correct UDP CS only	\checkmark	*	х	\checkmark	х	х	х	*	х	\checkmark
IP Payload CS only	\checkmark	*	х	х	\checkmark	х	х	*	х	\checkmark
3rd CS only	\checkmark	*	х	х	х	\checkmark	х	*	х	х
4th CS only	\checkmark	*	х	х	х	х	\checkmark	*	х	х
Correct CS or IP Pay CS	\checkmark	*	х	\checkmark	\checkmark	х	х	*	х	\checkmark
Compensated CS only	\checkmark	*	х	х	х	х	х	*	х	\checkmark
Zero CS only	\checkmark	\checkmark	х	х	Х	х	х	\checkmark	х	х
No UDP-O traversal	\checkmark	*	*	х	х	х	х	х	х	х

IP Payload Checksum Pathology

• About 80% of the paths traversed by at least one UDP-O datagram are affected by the IP Payload Checksum pathology (alone or in conjunction with the benign pathology)

Raffaele Zullo – TMA2020 – 10/06/2020